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Abstract-A method based on a self-organisational approach has been developed, where a local
state operator defines the state of each finite element at each iteration. The algorithm is based on
the principle of local adaptation with global feedback in the form of a derivative equation based on
von Mises stresses that allows the local remodelling function to vary at each time step. The state
operator has the form of a nonlinear differential equation solved iteratively based on the material
density and strain energy density within each element. A constraint equation is formulated based
on a maximum deviatoric strain energy criteria, with the objective to minimise the mass of the
design domain subject to the above constraint. A number of examples are presented to demonstrate
the use of this approach. 1997 Elsevier Science Ltd.

INTRODUCTION

The class of problems where the definition of the shape forms part of the design problem
is known as topology or layout optimisation. These problems are difficult to solve numeri
cally due to the large number of design variables and the large number of equality and
inequality constraints. This results in a problem that is ill-posed, with a design universe
that can be non-convex in its solution space. The homogenisation method (Strang and
Kohn, 1986; Bendsoe and Kikuchi, 1988) solved this problem by relaxation of the object
function by introducing a microstructure into the design space.

Recently a number of other techniques have been proposed that simplify the solution
to the optimisation problem. These include the evolutionary technique of Stevens and Xie
(1993), the linear programming technique of Yang and Chuang (1994), the simulated
biological approaches of Mattheck and Burkhard (1990) and Mattheck et al. (1993) and
the sensitivity approach of Atrek (1989). In this paper an optimisation process is presented
that has, as its basis, an algorithm originally developed for predicting anatomical density
distributions in natural human bone, (Cowin and Hegedus; 1976, Huiskes et a!', 1987;
Carter 1987; Carter et al., 1987; Weinans et al., 1993). In its original form as a bone
adaptation algorithm, the method was also used by Reiter et at. (1993) to improve the
design of a composite structure. Only local optimality criteria can be handled and thus the
method is limited to problems where global constraints were neglected.

ADAPTIVE ELASTICITY

The theory of adaptive elasticity as it pertains to bone remodelling was originally
proposed by Cowin and Hegedus (1976). Their model is based on the principle that the
adaptation of living bone is a spatially localised event where a relationship exists between
stress, strain and the modification of bone density. They assumed that the rate of adaptation
is couples to the difference between the homeostatic strain and the actual strain. The greater
this difference, the larger the driving force for adaptive activity. Huiskes et at. (1987)
extended this approach by setting the bone remodelling rate, proportional to the difference
between the homeostatic or reference strain energy density (Us), and the new strain energy
density (Ut). The driving energy will then equal the difference, Ur
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(1)

For an arbitrary solid the total strain energy U is given by the volume integral;

U = JUdv,

where Uis the strain energy per unit volume or strain energy density and

(2)

(3)

where (Ji) is the local stress tensor and Gi} is the strain tensor. The strain energy density can
also be related to the elasticity tensor E, Poisson's ratio v and shear tensors Ti} by the
following;

The rate of change of bone density P can be described as an objective function which
depends upon the strain energy density (stimulus) at a specific location and is directly
related to the localised stress (Huiskes et al., 1987);

dp
-d = F((J, G, p), 0 < p ~ Pcb't . (5)

The constraints specified in eqn 5 relate to the bone densities: the density of the bone
cannot decrease below zero (total reabsorption) or above the density of fully mineralised
cortical bone Pcb' The above system is in equilibrium when the objective function F reaches
zero. Equation 5 can be expressed using the following relationship (Huiskes et al., 1987)
where the bone stimulus value can be approximated as Ujp which represents the strain
energy per unit of bone mass;

dp (U )dt = B P-k 0 < p ~ Pcb' (6)

Here, k represents the stimulus objective of the natural bone and B is an adjustment
multiplier. Knowing that the strain energy density is related to the elasticity tensor, then
the strain energy density changes by modifying the material density.

Finally a relationship is required between density and the elasticity tensor, shown
experimentally (for bone) to be approximated by the following power law relationship,
Carter and Hayes (1977) ;

where A = 3790 and}' = 3.

E= Ap', (7)

INSTABILITIES IN THE DISCRETE RATE EQUATION

Although the adaptation rate algorithm is based on a simple equation, recent research
has demonstrated instabilities associated with the use of the finite element iterative version
of this equation. Weinans et al. (1992) showed that a standard finite element post processor
graphics program obscured artifacts associated with the algorithm. Using nodal interp
olation, a smearing of adjacent densities occurs (which is standard practice in obtaining a
smoothed contour plot). In this form the results appear to simulate the actual density
distribution in an anatomical model of the femur, with the density contours displaying a
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smooth continuous distribution. If the same model is viewed again without nodal interp
olation, then a discrete structure is evident along with checker-boarding of the elements. It
has been suggested that the resulting structure displays an appearance similar to the network
type pattern of the internal bone structure (trabecular bone) which has been hypothesized
as showing self-optimised characteristics (Weinans et al., 1992). Closer inspection shows
the elements converge to the constraint boundaries of the solution, with each element
reaching either full density or disappearing. The iterative solution bypasses the continuous
converged density solution within the first few iterations due to the existence of an unstable
saddle point. According to Weinans et al. (1992), the end solution reached, although
showing convergence (i.e., there is no change in structure or mass), is both discontinuous
in nature and incorrect in terms of satisfying the objective function. The final solution is
unable to satisfy the objective function VjP = k such that the rate of change of density
dp! dt = O. This leads to a solution where element stimulus levels are scattered both above
and below the set stimulus value k. Weinans et al. (1992) also showed using a two element
model that the optimisation process results in a chaotic solution, yet paradoxically the final
solution of a many element model results in a distinctly non-chaotic structure.

This phenomena has been studied in greater detail (Cowin et al., 1992, 1993), showing
that the continuous differential equation predicts smooth, monotonic and non-chaotic
behaviour. The chaotic behaviour is a result of the discrete.. time computational process and
the nonlinear behaviour of the elasticity tensor, density relationship. Cowin et al. (1992,
1993) also showed that the discrete time algorithm can be characterised by a logistic one
dimensional map that arises quite commonly in population biology (May, 1976)

X'+I = /.x,(1--x,), (8)

where t is the discrete time, X I + 1 is the size of a population at t+ 1 and is related to the size
XI of the population in the preceding generation at time t. This equation assumes that the
species at any time is self-interacting in an unchanging environment typified by the control
parameter ;.. The result is an algorithm characterised by Feigenbaum period doubling
cascades that lead to chaos, with the control parameter ;. determining the onset of period
doubling.

In a similar fashion, the scaled density exponent, '( in eqn 7, also controls the onset of
instabilities, which occur for values of'Y greater than I, (Cowin et al., 1993). In a further
appraisal Harrigan and Hamilton. (1992a. 1992b, 1993, I994a, 1994b) showed that the
objective function is in fact a combination of two indicator functions detailing the global
optimisation characteristics of eqn 6. They showed that density taken to a power as a state
variable, results in a process of optimisation, of both the weighted sum of the strain energy
in the structure and the total mass of the structure. Certain conditions are necessary for
this to be ensured.

It should be emphasised that these methods of predicting anatomical bone densities
pose many questions in relation to their applicability, as they are not related in any
mechanistic way to the biology underlying the development of animal or human bones.
Many of the methods developed result in steady state solutions that look like bone from
an engineering point of view but the methods in general rely on using mechanisms and
pathways completely unrelated to real biology. This is, of course, irrelevant in terms of
engineering topology optimisation.

OPTIMISAnON PROBLEM

Traditional optimisation using mathematical programming techniques is normally
formulated as follows: Find the set of design variables P ,= {Ph P2, P3, ... ,p,,} that will :

minimize F(P)

subject to h(P) ~ (Jlim'
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and the side constraints: p; ~::; Pi ~ p~, i = 1, n, where F(P) is the objective function and
h(P) is an inequality constraint, based in this case on stress and where P is the vector of the
design variables and pi and p" are the lower and upper bounds on the 'n' design variables,
respectively. The objective of the topology design can be formulated as a relationship
between the compliance and the potential energy, with the objective to minimize the
compliance which is equivalent to maximizing the stiffness. Further to this we also wish to
minimise the mass of the design subject to the inequality and side constraints imposed. This
type of nonlinear programming problem can be solved using homogenisation techniques
with a suitable mathematical programming technique such as gradient descent methods,
Lagrange multiplier etc, if the mass or volume of the desired structure is specified as a
constraint. Leaving the objective as maximising the stiffness of the structure using the
available constraint volume.

PROGRAM "SELF-OPT"

The goal of this paper was to develop an algorithm based on the unusual properties
of eqn 6 without resorting to the more traditional approach detailed above. Thus the
algorithm must be able to achieve the development of a single density, minimum volume
shape, without overstressed areas, (Payten et al., 1995, Payten, 1996). An important con
sideration is that any alteration to eqn 7 must be obtained without destroying its 5,elf
organisational characteristics.. A suitable algorithm can be found by linking the local
reference stimulus 'k' to a global feed-back stress parameter, based on the maximum von
Mises stress at each iteration. The reference stimulus can then be adjusted by both the local
and global situation. This ensures that no elements exceed the maximum stress limit and
al10ws minimisation of the objective based on a self-organisational approach. The 10cal1y
unstable nature of the original algorithm (eqn 6) is used to ensure that segregation to a real
single density structure is achieved.

The bone adaptation equation is modified by changing 'k' the objective stimulus to
Vliml p. This recasts the problem in terms of a limiting criterion V lim . In this case U lim

represents a von Mises stress criterion, posing the problem on a more conventional engin
eering frame-work. The set stress level must be translated into a strain energy density, as
the optimisation wil1 be performed in response to the deviatoric component of the strain
energy density U,. If Yequals the limiting stress, then the energy criterion in terms of strain
energy can be approximated using the fol1owing criterion;

T (I+V)'2L lim = . 6£ 2} . (9)

To incorporate this into the bone adaptation equation, 'k' is first modified by separating
the volumetric and deviatoric parts of the strain energy and substituting the limiting strain
energy (eqn 9) for the deviatoric component of the stimulus. It is assumed that the volu
metric component of the strain energy does not contribute to the shear energy of an
isotropic material and hence as we wish to optimise based on the von Mises stress this
component is subtracted. The equation in this form behaves similar to the original algo
rithm, any solution will overshoot the constraint stress, leading to a higher final stress. In
order to obtain a solution that does not exceed the solution constraints (von Mises stress),
adjustment of the algorithm is required at each time step based on the global1y recovered
maximum stress. This is achieved by dividing the strain energy component by a suitable
global parameter that based on the global maximum von Mises stress. This essential1y gives
a global feedback to the local equation and has the effect of ensuring that Vi < Vii'" is
satisfied for all elements. For example, if during the solution phase the situation V, > Ulim

occurs (meaning that some elements in the model1ing domain exceed the stress), then the
stimulus Ulim!P must be adjusted to a smaller value in order to satisfy the global stress
constraint. The local stimulus is thus linked to the global solution via the adjustment
parameter. Two parameters are introduced to enable local!globallinking, IjJ and (Jlim' The
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value (Jhm describes the maximum permissible stress in the final shape and is the true global
limit. The magnitude of the adjustment parameter, t/J is not known a-priori and relates to
the proximity of the system to the prescribed limit stress. Assuming the global stress
condition is achieved, then no element will exceed (Jhm' The global differential in terms of
von Mises stress is stated as;

(10)

and the discrete form of eqn 10 is;

(11 )

where T is a relaxation parameter and (J,m is the maximum global von Mises stress recovered
from the static analysis at each time step. Substituting the discrete expressions for t/J and (J
into the adaptation eqn (6) gives

dp _ (U,," [Ullm!(t/J/ +T((Jvm -(JII,',)) UlJ)
~-B --- +~

dt P, Ps Ps
(12)

where U, is the total strain energy in the ith element, U,. is the volumetric strain energy in
the ith element, P, is the density in the ith element and Ps is the upper bound density. The
equation still applies at a local level, element by element. The iterative solution of eqn 12
is still highly unstable in this form in terms of satisfying the global stress constraints. To
prevent the problem of an increasing global parameter t/J (when (J"m is decreasing, but higher
than (Jllm), it is necessary to include the following constraints and conditions defined using
a simplified control algorithm;

and

jt/J,+f."t/J' if f."t/J > 0/\ f.,,(J > 0,.
t/J" if f."t/J > °/\ f.,,(J < 0,

t/J/+] = .
t/J,+f."t/J, If f."t/J < °/\ f.,,(J < 0,

t/J" iff."t/J<O/\f.,,(J>O,

(13)

(14)

where (J;.m and (J;,,-I are the global maximum von Mises stress in the current and preceding
time steps, respectively. The elasticity tensor E of each element at each iteration can then
be updated and rewritten to the NISAII file for the next static analysis. This is accomplished
by relating E to the density taken to a power '(;

Solution convergence can be monitored by the following criterion;

4> = ~ L If!. _Ulim/(t/J/+T((Jvm-~(Jllm)) [.
mi~l P Ps

In addition, the total mass of the structure is calculated at the end of each step;

(15)

(16)
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M = L(Vip').
j:= 1

(17)

The ability to predict optimal structures can be demonstrated by applying this newalgo
rithm to engineering problems and comparing the results with those obtained by Suzuki
and Kikuchi (1991), Mlejnek and Schirrmacher (1993), Jog et al. (1994), Baumgartner et
al. (1992), Atrek (1989) and Steven and Xie (1993). These methods represent a range of
techniques from the Homogenisation technique through to the "soft kill" approach.

RESULTS

A number of cases are examined initially by comparing with simple analytically deter
minable shapes and then by comparing with geometries analysed via other methods.

Case I : tension bar
This case models a simple tension bar. A square domain with an arbitrary size of 5

units along each side and I unit thick is modelled. The displacements along a I unit wide
length located at the centre of the left hand edge are fixed at zero and a force of 250 units
is applied to the same length on the opposite edge. E" is 421, a density of 7.8 g/cm3 is used
with y equal to 3, resulting in a full density structure with E equal to 200 GPa. The algorithm
is integrated using a time step !1t = 100 and a relaxation parameter T = 0.5. The objective
function is set to a shear strain energy equivalent to 240 MPa. The solution for this problem
should approximate a design with a constant stress of 250 units along the entire bar with a
thickness of I unit incorporating a width of 8 elements.

Comparing the original bone adaptation algorithm with the modified algorithm dem
onstrates the unstable nature of the original algorithm. Figures I and 2 show the cor
responding converged density distributions. The resulting shape for both algorithms is a
tension beam, showing that in this case both methods lead to the design of an optimal
shape. However the bone adaptation solution has a smaller thickness leading to higher
stresses. The bone adaptation solution obtains a von Mises stress of 374 MPa, exceeding
the stress criteria of 250 MPa. The model has a corresponding thickness of 0.75 units, while
the modified algorithm produces a structure stressed at the set constraint of 250 MPa and
is correspondingly I unit thick. For this case both algorithms lead to almost complete
segregation ofdensities into either reabsorbed or full density elements. Although the SELF
OPT algorithm incorporates a global stability criteria, the self-organisational nature of the
original function appears to be intact. This is not surprising since the modification adjusts
only the stimulus and does not change the function or provide stability to the original
algorithm. This result compares favourably with advanced layout theories and the SKO
method. A similar case analysed by Mlejnek and Schirrmacher (1993) also results in the
same tension beam as produced here.

Case 2: two bar frames
This example considers a two-bar frame and corresponds to problems analysed by

Suzuki and Kikuchi (1991), and Steven and Xie (1993). As described by Steven and Xie
(1993), "for fixed values of the applied load F and the horizontal length L, the optimal
height is obtained as H = 2L if this structure is assumed to be a truss". The model here
incorporates the same principles as the previous authors. A rectangular domain larger than
the size Lx 2 x L is used. The mesh incorporates 25 x 60 isoparametric 4 node quadrilateral
elements. As used by Steven and Xie (1993) the Young's modulus is 100 GPa with a
Poisson's ratio of 0.3. The time scheme and relaxation parameter are the same as in case 1.
As the adaptation involves a change in the density term, the maximum density is arbitrarily
set to 5, y is set to 3 so that the constant Eo equals 800. A stress criterion must be used and
is set arbitrary to 250 MPa.

This example accreted to a two bar frame as shown in Fig. 3. The analytical solution
to a perfect two-bar is given by H = 2 x L, and both Suzuki and Kikuchi (1992) using the
homogenization method and Steven and Xie (1993) using the evolutionary rate method
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predicted this result. Using SELF-OPT the thickest truss conformed to the H = 2L ratio,
however, two smaller trusses outlying the main truss are formed joining the thick truss to
the top and bottom of the spatial domain. This smaller truss developed early in the adaption
process, due to initial strain energy density that existed in the full beam at the ends. (Note:
that the first two layers of elements along the left hand edge are frozen and do not take
part in the adaption process.)

Case 3: square cantilever
A square cantilever of edges 5 units in length with a displacement fixed along one edge

and a single vertical midpoint load on the opposing side of 50 units was modelled. The
same properties and time stepping scheme were used as in case 1. The mesh was discretized
into 40 x 40, 16004 node plain stress elements. Noting that the initial maximum stress for
the design domain is 193 MPa, the objective function was set equal to 250 MPa, thus
allowing the cantilever an increase of 57 MPa during the adaption process. Figures 4 and
5 show the von Mises stress solution for the bone adaptation and local/global algorithms.

As in the tension bar case, the original algorithm shows areas with stresses up to 490
MPa (Fig. 4), while the modified SELF-OPT solution achieves the constraint stress of 250
MPa, (Fig. 5). Ignoring the mass difference and focusing only on the topology, shows that
the two algorithms give similar features. Both form the main two outer truss system.
However a number of intermediate shear trusses are also formed allowing the main truss
to bend where the middle truss intersect it. Figures 6 and 7 detail the corresponding final
density distribution for the two algorithms.

The density distributions in Figs 6 and 7 correspond to the stress patterns in Figs 4
and 5, with the SELF-OPT algorithm containing significantly more mass and consequently
a lower stress, than the original bone adaptation solution. The SELF-OPT structure shows
almost complete discretization to either elements or elements at full density, in this case
7.8/cm3

. Out of a total of 401 remaining elements, 66 elements, (-16%) were below full
density. However, the majority of these elements had a density greater than 4.0 g/cm3

. The
overall mass decrease was 75% taking the stress from 193 to 250 MPa. If the situation
'Y < 1 is modelled then the result should be a continuous density distribution as shown in
Fig.8.

The final converged shape shows the initial development of the two main trusses with
a lower density internal area and areas of reabsorption on the top and bottom right hand
end. The various algorithms and parameter values 'Yare compared for the mass reduction
of the bone adaptation algorithm, the local/global algorithm plus the stable solution when
( < I (Fig. 9).

The behaviour of the local/global algorithm during the solution phase does not display
monotonic convergence for the mass reduction. During the initial phase of the solution,
the adaptation rate is primarily driven by the local algorithm. The solution overshoots the
continuous density stable solution, lowering the distribution of the mass to the extent that
the stresses in the system exceeds the local objective function. In this case some elements in
the spatial domain exceed the shear energy density value corresponding to a maximum von
Mises stress above 250 MPa. Then the global feedback parameter t/J increases, adjusting
the local stimulus to a point where the stress in the model decreases. At this stage the global
parameter t/J can be quite I"rge causing the stresses to decrease below the stress criterion of
250 MPa. The global parameter re-adjusts causing a rise in stresses. The dynamic readjust
ment can take several iterations until the limit stress stabilises at the desired global criterion.
At this point although the global stress criterion is satisfied the local objective function is
not. Figure 10 shows the convergence solution using the two algorithms and various values
of gamma y.

The curves for the local solution show the difference between the convergence inte
grated over active elements and convergence integrated over all the elements. In the latter
case the strain energy objective function is unsatisfied causing a higher convergence as
elements accrete out. This is in contrast to the local/global algorithm where an adjustment
of the global stability criteria causes the local stimulus function to change, thus enforcing
the limit of the global stress criterion. During the majority of the solution phase the two
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convergences follow closely, deviating late in the solution as the final parts of the structure
solidify. This is caused by two factors; firstly the remaining active elements are shielded by
the structure now at full density; and secondly the mesh size leaves elements trapped at
intermediate densities (they are unable to achieve full density because they cannot reduce
in size as the formed truss, in many cases reduces to one element thick). The convergence
curve of all elements and the convergence curve using only active elements for the case
where i' < I follow each other closely. The final convergence value for this solution is very
close to zero. The SELF-OPT algorithm integrated over all elements shows the lowest
convergence of any of the solutions. This is due to the forcing nature of the global feedback
function. Although the solution stays below 250 MPa (the upper limit), for the local
objective function to be fully satisfied, all elements would necessarily show the same stimulus
value, representing the equivalent shear energy at 250 MPa divided by the density. This is
not the case, the constraint points showing the higher stimulus at 250 MPa whereas the
remaining structure shows stimulus levels below this. This is due to the adjustment of the
stimulus by the global parameter to keep the solution below the limit, meaning some
elements experience a higher than necessary stimulus. The evolution of the structure shows
interesting features that can be gleaned from the behaviour of the mass curve. In the initial
steps the spatial domain decreases its mass well below the desired density. The algorithm
then tends to grow the two main beams first with an area of lower density, 3--4 gjcm 3

,

occupying the area between the trusses. At this stage the intermediate truss system is then
slowly formed from this lower density area. The evolution of these shapes is different from
that displayed by Atrek (1988) and Steven and Xie (1993), where the final shape is the
result of a process whereby elements are deleted from the design domain, rather than
formed. Optimising the cantilever beam from a number of randomly distributed initial
density patterns always resulted in very similar structures.

Case 5: long cantilever
This problem is also a frequently analysed case. A long cantilever beam, clamped at

one end and loaded with a corner vertical force at the opposing end is modelled. Again the
modelling parameters are the same with a limit stress of 250 MPa. The design domain
consist of a 25 x 60 4 node isoparametric plain stress elements,S units thick. The resultant
structure is made of two main beams with a set of cross trusses through the beam's short
axis joining the top and bottom beams. The density plot is shown in Fig. II.

The results are similar, but not identical, to the SKO method (Baumgartner et at.
(1992) and Mattheck et al. (1993)). The algorithm here appears to produce more cross
members than the SKO method. The density plot of the SELF-OPT algorithm for this case
displayed significant checker boarding of the solution. This problem may be mesh depen
dent, that is a finer mesh will cause the struts to firm up. A plot of the von Mises stresses
show the maximum stress occurring at the centre line obtaining a value of 250 MPa, Fig.
12.

The type ofchecker boarding seen here was also found by Jog et al. (1994), and Suzuki
and Kikuchi (1991). The first author suggested using 8 node elements whereas the latter
suggested that refining the model would eliminate the 'porous frame' and generate solid
frames. Incorporating mid side node elements (parabolic shape function) using SELF-OPT,
the checker boarding seen in Fig. II is prevented and the structure solidifies out as distinct
trusses (Fig. 13). Although 8 node elements produce a "clean" structure it does so slowly
compared with 4 node elements.

Case 6 : M BB beam
This example involves the optimisation of an MBB beam (Messerschmitt-Bolkow

Blohm GmbbH, Munchen, BRD) that is used to carry the floor in an Airbus passenger
carrier. This problem has been analysed by various authors (Rasmussen et al. (1992) and
Olhoff et al. (1994)) using the homogenisation, boundary variation method and Steven and
Xie (1993) using the evolutionary technique. The problem can be stated as a long centre
loaded beam fixed at one end and free at the opposite end. Due to symmetry only half the
beam is modelled. The beam has dimensions of 1200 length, 400 height and 4 mm width.
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Based on Steven and Xie (1993), 60*20 quadrilateral elements are used. Young's modulus
E = 200 GPa, Poisson's ratio v = 0.3, !J.t = 40 and r = 0.5, and full density is taken as. 7.8
units with a constraint stress of 305 MPa (von Mises stress). The result is shown in Fig. 14.

The various techniques yield somewhat similar topological solutions. Top and bottom
beams are formed with various trusses or beams formed between the two main beams. The
final design using SELF-OPT results in a structure stressed to the constraint stress of 305
MPa, a deflection of 5.4 mm is generated \\'ith a volume reduction of 68% over the initial
design. The results show that the SELF-OPT algorithm results in a structure with a large
reduction in volume but still retaining excellent stiffness compared with the initial solution.

Case 7: 3-d cantilcver
The final case presented is an extension of the 2-D cantilever beam to 3 dimensions to

illustrate the use of the technique in a higher dimension. This model incorporates 8000
elements, and the result as expected shows a similar formation to the 2-D case, with the
intermediate trusses angling towards the force constraint as shown in Fig. 15.

CONCLUSIONS

I. A simple algorithm of the type described here appears to have the ability to predict
optimal engineering shapes using standard finite element analysis.
2. The shapes produced compare well with other types of engineering layout algorithms
with the computational costs involved in the calculation of the local density derivative
being minimal.
3. The SELF-OPT algorithm lends itself to the optimisation of structures under imposed
stress.
4. Future extensions include multiple load case modelling and eigenvalue optimisation.
Work in progress is focused on a more detailed study of stability, control algorithm.
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